Exercise 13

In Exercises 11-14, (a) solve the given equation by the method of characteristic curves, and (b) check your answer by plugging it back into the equation.

$$
\frac{\partial u}{\partial x}+\sin x \frac{\partial u}{\partial y}=0
$$

Solution

The differential of a two-dimensional function $g=g(x, y)$ is given by

$$
d g=\frac{\partial g}{\partial x} d x+\frac{\partial g}{\partial y} d y
$$

Dividing both sides by $d x$ yields the fundamental relationship between the total derivative of g and its partial derivatives.

$$
\frac{d g}{d x}=\frac{\partial g}{\partial x}+\frac{d y}{d x} \frac{\partial g}{\partial y}
$$

Comparing this to the PDE, we see that along the (characteristic) curves in the $x y$-plane defined by

$$
\begin{equation*}
\frac{d y}{d x}=\sin x \tag{1}
\end{equation*}
$$

the PDE reduces to the ODE,

$$
\begin{equation*}
\frac{d u}{d x}=0 . \tag{2}
\end{equation*}
$$

Solve equation (1), using ξ for the characteristic coordinate.

$$
y=-\cos x+\xi \quad \rightarrow \quad \xi=y+\cos x
$$

Then solve equation (2) by integrating both sides with respect to x.

$$
u(x, \xi)=f(\xi)
$$

Here f is an arbitrary function. Now that u is known, change back to the original variables.

$$
u(x, y)=f(y+\cos x)
$$

Compute the first derivatives to check the solution.

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=f^{\prime}(y+\cos x) \cdot \frac{\partial}{\partial x}(y+\cos x)=f^{\prime}(y+\cos x) \cdot(-\sin x)=-(\sin x) f^{\prime} \\
& \frac{\partial u}{\partial y}=f^{\prime}(y+\cos x) \cdot \frac{\partial}{\partial y}(y+\cos x)=f^{\prime}(y+\cos x) \cdot(1)=f^{\prime}
\end{aligned}
$$

As a result,

$$
\frac{\partial u}{\partial x}+\sin x \frac{\partial u}{\partial y}=-(\sin x) f^{\prime}+(\sin x) f^{\prime}=0
$$

